Pathway analysis using random forests classification and regression
نویسندگان
چکیده
منابع مشابه
Pathway analysis using random forests classification and regression
MOTIVATION Although numerous methods have been developed to better capture biological information from microarray data, commonly used single gene-based methods neglect interactions among genes and leave room for other novel approaches. For example, most classification and regression methods for microarray data are based on the whole set of genes and have not made use of pathway information. Pat...
متن کاملRobust linear registration of CT images using random regression forests
Global linear registration is a necessary first step for many different tasks in medical image analysis. Comparing longitudinal studies 1 , cross-modality fusion 2 , and many other applications depend heavily on the success of the automatic registration. The robustness and efficiency of this step is crucial as it affects all subsequent operations. Most common techniques cast the linear registra...
متن کاملReal-Time Head Pose Estimation Using Random Regression Forests
Automatic head pose estimation is useful in human computer interaction and biometric recognition. However, it is a very challenging problem. To achieve robust for head pose estimation, a novel method based on depth images is proposed in this paper. The bilateral symmetry of face is utilized to design a discriminative integral slice feature, which is presented as a 3D vector from the geometric c...
متن کاملContinous Head Pose Estimation using Random Regression Forests
Head pose is a rich visual cue that finds great interest in the field of human robot interaction (HRI) and for video surveillance applications. Previous attempts at solving this problem have often proposed solutions formulated in a classification setting. Furthermore, strong assumptions on illumination and scale in an occlusion-free environment have usually been made. We propose a regression so...
متن کاملHydrologic Landscape Regionalisation Using Deductive Classification and Random Forests
Landscape classification and hydrological regionalisation studies are being increasingly used in ecohydrology to aid in the management and research of aquatic resources. We present a methodology for classifying hydrologic landscapes based on spatial environmental variables by employing non-parametric statistics and hybrid image classification. Our approach differed from previous classifications...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2006
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btl344